

GCSE → A Level Biology transition

Answers to maths skills practice questions

1 Numbers and units

c 68 s

```
a 1 kJ = 1000 \text{ J}, so 4500000 \text{ J} = 4500000/1000 \text{ kJ} = 4500 \text{ kJ}
     b 1 \text{ MJ} = 1000 \text{ kJ}, so 4500 \text{ kJ} = 4.5 \text{ MJ}
    1 m = 10<sup>9</sup> nm (there are a billion nanometre in a metre)
     9.0 \times 10^{-8} \text{ m} = 9.0 \times 10^{-8} \times 10^{9} \text{ nm} = 9.0 \times 10^{-8+9} \text{ nm} = 9.0 \times 10 \text{ nm} = 90 \text{ nm}
      1.20 \times 10^{-7} \text{ m} = 1.20 \times 10^{-7} \times 10^{9} \text{ nm} = 1.20 \times 10^{-7+9} \text{ nm} = 1.20 \times 100 \text{ nm} = 120 \text{ nm}
     Range = 90 \text{ nm} to 120 \text{ nm}
           a 10<sup>11</sup>
3
     c 1000 + 1000 = 2000
                                                                 d 100 - 0.01 = 99.99
                        b 10<sup>-3</sup> or 0.001
   a 10<sup>1</sup> or 10
     c 10^6 or 100000 d 100^2 \div 100 = 100 or 10^2
5 a 4 mm
                                     b 130 s
     c 31 300 µl
                                    d 0.000 104 mg
                                     b 8.6 L or 8.6 dm<sup>3</sup>
   a 57 μm
```

2 Decimals, standard form, and significant figures

```
0.0214 \text{ cm}^2 0.0218 \text{ cm}^2 0.03 \text{ cm}^2 0.034 \text{ cm}^2
    12.03 cm 12.901 cm 22 cm 22.003 cm 22.25 cm
   a 3.06×10<sup>3</sup> kJ
                              b 1.4 \times 10^5 \, \text{kg}
     c 1.8 \times 10^{-4} m
                                d 4 \times 10^{-6} m
          a 1 \times 10^{2}
                                                 b 1 \times 10^4
     c 1 \times 10^{-2}
                                d 2.1 \times 10^7
   Give the following as decimals.
     a 1 000 000
                                b 4 700 000 000
     c 1 200 000 000 000 d 0.000 796
6 a 7600 g / 7640 g b 28 m / 27.5 m
                                d 6.0 \times 10^2 \text{ m} / 5.00 \times 10^2 \text{ m}
     c 4.3 g / 4.33 g
7
         1.2 \times 10^4 \,\mathrm{g}
```

d 0.09 mm

3 Working with formulae

```
1 M? I = 6.6 \text{ mm} O = 165 \mu\text{m}
Change to same units: either both mm or both \mum or both m: 165 \mum = 0.165 mm M = I/O = 6.6/0.165 = × 40
```

OCR A Biology

GCSE → A Level transition **Teacher sheet**

- Area = $0.5 \times 2 \text{ cm} \times 9 \text{ cm} = 9 \text{ cm}^2$
- Area = $\pi r^2 = \pi \times (0.7 \,\mu\text{m})^2 = \pi \times (0.7 \times 10^{-6} \,\text{m}) \times (0.7 \times 10^{-6} \,\text{m}) = 1.5 \,\mu\text{m}^2$
- 4 $N_0 = 24$

$$7 \text{ days} = 7 \times 24 \text{ hours} = 168 \text{ hours}$$

so
$$n = 168 \div 20 = 8.4$$

N = 96 + 4 + 22 + 3 = 125 animals found

so
$$D = 1 - \sum_{n=0}^{\infty} \left(\frac{n}{N}\right)^2$$

inner brackets:
$$D = 1 - \left(\left(\frac{96}{125} \right)^2 + \left(\frac{4}{125} \right)^2 + \left(\frac{22}{125} \right)^2 + \left(\frac{3}{125} \right)^2 \right)$$

indices:
$$D = 1 - (0.768^2 + 0.032^2 + 0.176^2 + 0.024^2)$$

addition:
$$D = 1 - 0.6224 = 0.3776 = 0.38 (2.d.p)$$

6
$$O = 0.1 \text{ mm}$$
 $I = ?$ $M = 50$ $I = M \times O = 50 \times 0.1 \text{ mm} = 5 \text{ mm}$

7 Area = 5.3 cm² radius?
$$A = \pi r^2$$

$$5.3 = \pi r^2$$
 $r^2 = \frac{5.3}{\pi} = 1.687$ $r = \sqrt{1.687} = 1.3 \text{ cm}$

Or
$$A = \pi r^2$$
 $r^2 = \frac{A}{\pi}$ $r = \sqrt{\frac{A}{\pi}}$ $r = \sqrt{\frac{5.3}{\pi}} = 1.3 \text{ cm}$

 $7.25 \times 10^{-6} \,\mathrm{m} \,(7.25 \,\mathrm{\mu m})$

$$9 \quad a = \frac{\left(\frac{34}{100}\right) \times 135}{2} = 22.95$$

10 cardiac output = stroke volume x heart rate

stroke volume =
$$\frac{2.7}{77}$$
 = 0.035 dm³

Substitute in the known values:
$$0.84 = \frac{\text{biomasstransfer}}{25} \times 100$$

Rearrange the equation to give: biomasstransfer = $\frac{0.84}{100} \times 25 = 0.21 \text{ kg}$

4 Magnification

- **a** ×120
- **b** ×600
- ×26 000
- 0.88 µm

GCSE → A Level transition Teacher sheet

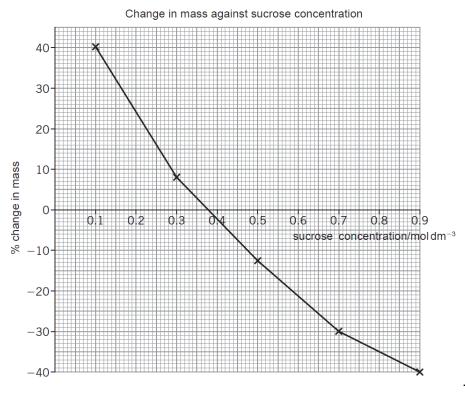
5 Percentages and uncertainty

1 **a**
$$\frac{2240}{3600000} \times 100 = 0.06\%$$
 b $\frac{480}{3600000} \times 100 = 0.013\%$

2 5.88%

3

Sucrose conc. / mol dm ⁻³	Initial mass / g	Final mass / g	Mass change / g	Percentage change in mass
0.9	1.79	1.06	-0.73	-40.8%
0.7	1.86	1.30	-0.56	-30.1%
0.5	1.95	1.70	-0.25	-12.8%
0.3	1.63	1.76	+0.13	+8.0%
0.1	1.82	2.55	+0.73	+40.1%


4 a 1 cm³ **b** 0.005 s **c** 0.05 °C

5

1

Measurement made	Equipment used	Absolute error	Relative error
Length of a fluid column in a respirometer is 6 mm	mm scale	0.5 mm	$\frac{0.5}{6} \times 100 = 8.3\%$
Volume of a syringe is 12 cm ³ of liquid	0.5 cm ³ divisions	0.25 cm ³	$\frac{0.25}{12} \times 100 = 2.1\%$
Change in mass of 1.6 g	balance with 2 d.p.	0.005 g	$\frac{0.005 \times 2}{1.6} \times 100 = 0.6\%$

6 Scatter graphs and lines of best fit

GCSE → A Level transition Teacher sheet

- **2 c** Table 1: Strong correlation. Positive at the start. As light intensity increases, the increase in the rate of photosynthesis decreases (so the graph levels off).
 - Table 2: Strong correlation. Negative at the start. As time increases, the rate of the decrease of the concentration decreases (so the graph levels off).