Section 4: Proof and sequences

Exercise

- 1. *n* is a positive integer. Prove that $n^3 n^2$ is always even.
- 2. Prove that the product of three consecutive integers is always be a multiple of 6.
- 3. Prove that the square of any odd number is always 1 more than a multiple of 8.
- 4. Write down the first four terms of each sequence defined below, starting with n = 1 in each case.
 - (i) 3n-1
 - (ii) $n^2 1$
 - (iii) $3n^2 2n + 1$
- 5. Find a formula for the *n*th term of each the linear sequences below.
 - (i) 2, 5, 8, 11, ...
 - (ii) 10, 8, 6, 4, ...
- 6. Find a formula for the *n*th term of each the quadratic sequences below.
 - (i) 3, 9, 17, 27, 39, ...
 (ii) -2, 4, 14, 28, 46, ...
 - (iii) 7, 12, 15, 16, 15, ...
- 7. For each of the following sequences, find the 1st term, the 5th term, the 100th term, and the limit of the sequence as $n \rightarrow \infty$.

(i) *n*th term
$$=\frac{2n+5}{4n-1}$$

(ii) *n*th term $=\frac{1-6n}{2n+3}$

- 8. The *n*th term of a sequence is given by the formula $n^2 + 2n 5$. Prove that 1000 cannot be a term of the sequence.
- 9. A sequence has all its terms positive.
 As n→∞, the nth term of the sequence approaches 3.
 - (a) Give a possible formula for the *n*th term of an increasing sequence with the properties above.
 - (b) Give a possible formula for the *n*th term of a decreasing sequence with the properties above.

